Indexing
Variation Graphs

Jouni Sirén
Wellcome Trust Sanger Institute

* Path indexes are text indexes tor the path labels in a
graph.

* The index finds the start nodes of the paths labeled
by the query string.

* Indexing the paths themselves is not cost-effective.

Trade-ofts

The number of kmers in a graph increases
exponentially with k.

k should be larger than the expected length of
maximal exact matches.

In one human variation graph, the number of kmers
s 1.031k.2.348 billion, or 116 billion for k = 128.

The design of a path index is a trade-off between
index size, query performance, maximum qguery
length, and ignoring complex regions of the graph.

* The kmer index is a simple Key Value Key Value

path index. It consists of a SES 11 GTA 3

set of key-value pairs. ASS 10 TAS 9

* A hash table supports fast ATA ! CA O

kmer queries. ATC 3 TGT 5

ATG 3 C 4

* Binary search in a sorted CAT 26 G A

array Is slower but supports CTT 5 4GO 0
queries shorter than k.

GCA 1 ##G 01

* Index size: terabytes. GCT 1 ## 02

* We can represent the kmer Key Value Key Value

index as a de Bruijn graph. $$S 11 GTA 8
A$S 10 TAS 9
* We label each node with the ATA 7 TCA 5
first character of the key. ATC 3 TGT 5
* The de Bruijn graph ATG 3 C 4
approximates the input CAT 2,6 G 4
graph. There are no false CTT 2 #GC 0
negatives, and no false GCA 1 ##G 01
positives shorter than k. GCT : sag (00

(ATC

=

1 2,6 (ATG\

TCA ATA
5 7
TGT GTA
5 8

we \ [##c) [#cC 3
0:2 0:1

TAS ASS $$$
0 9 10 11
GCT | [CTT
2 2

s

Long paths may be false positives, but we can verify
them in the input graph.

Elj
@

GCA CAT
1 2.6
3 ’
#HH# #HG #GC , TAS A$S $$%
0:2 0:1 0 9 10 11
GCT CTT
1 2

21| o
_|
o 0O
a
o3
>

— —
N R I
_l
o Q)
'
o 3
>

Succinct de Bruijn graphs

Node BWT 1\ ouT
$$$ A 1 1
A;ﬁi (T: 1 1 e Sort the nodes, write the
ATC c 1 1 predecessor labels to BWT, and
ATG C 1 ; encode the indegrees and the
CAT GT 01 001 outdegrees in unary to bitvectors
CTT G 1 01 IN and OUT.
GCA # 1 1
GCT # 1 1 * The result is an FM-index for
GIA T 1 1 de Bruijn graphs.
TA$ AG 01 1
_TFZ_AF 21 81 1 » Bowe et al: Succinct de Bruijn
. o 1 1 graphs. WABI 2012.
TTG C 1 1 _
4GC 4 1 - * Index size: hundreds of gigabytes.
##G # 1 1

$ 1

HH##

—

GCSAZ

\rwrwrwrwr (~
G-»A-»T*T*A}»CHA
— .

GATTACA —>

AN N N Y r
C<—T<—A<—A<—T)¢GHT)\
/\J\J\J\)\ q

1. Transform the original graph into a directed input
graph with character labels.

2. Apply other transformations, such as

determinization, pruning, or expanding haplotype
paths.

3. Build a pruned de Bruijn graph for the path labels in
the transtormed input graph.

4. Use the pruned de Bruijn graph as an index of the
original graph.

Path grapns

High-order de Bruijn graphs of a graph have
redundant subgraphs, it shorter keys already specity
the position uniguely.

We can compress the de Bruijn graph by merging
such subgraphs.

Path graphs generalize de Bruijn graphs by using
any prefix-free set of strings as keys.

Inspired by: Sirén et al: Indexing Graphs for Path
Queries with Applications in Genome Research.
TCBB, 2014.

Elj
@

DD
- DEE
0:2 0:1 0] TTC 11
1 2 TTG

We can merge the nodes with a common prefix of keys
without affecting queries, if the value sets are identical.

ATC

. &

ATG 5 /
3

TA$ AS$$ $$3

10 11

‘

TAS ASS $$$
9 10 11

It we keep merging the nodes, we get a (maximally)
pruned de Bruijn graph, which behaves intuitively.

#HH ##G #G
0:2 0:1 0

key key Bgs By Vs
33§ 2 N $%% 0
A$ i/ o~ a8 0
ATAA/ N ATA -l - - -1 > 7
ATC/ JNATC -1 —— - > 1- -3 3
ATG 0 S ATG - >1-—-—-—->1--> 3
CA <t T~ A =P~ 0—3>> 2
CT <& T~ CT 0 D —3> 6
GC < T~ GC 0 _3>>1--> 8
T <z T~ 6T —->1-" 7 _3>1--> 9
TA <¢ < 1<F—— TA - >1-" _1--> 5
C <g¢ C - >1-"" _51--> 5
TG <g \ a_ 6 —>1-"_ _51--> 4
TT < . / T — >1- -~ 11— —2>0:2
#G T > - OA// ”’L\’T<_1/ #G 0 -
##GV\\\\lﬁ" \ NC<F——11 < - #H#G o _-
aiaiah U B S R ST = =k b e

\\\\14’ ”L#Q__ A //

~1<t - T R R

We can encode the result in the same way as in the
succinct de Bruijn graph / GCSA.

key BWT IN key Bg By Vs
B it
TS =—l<g >~
$$3 O = =l > > 888 0
AS -7 c<€t - -1 ~ > A8 0
ATA //04——1§:\\\ATA—>1————>1——>7
ATC SG<& - -0 ~_ > ATC - P> 1---->1--> 3
ATG “A0 ,T<t — — 1<z S~ ATG — >1--—-—-—>1--> 3
S p—— J-8<¢ - = |N.select() # —>1= 0—% 2
(C;g OUT.rank() /fi__Cost'S—mg 8 ‘bi—l;g
: s — = o ///7 - -
GT A <t— T~ 6T —->1-"7 _ 5>1--> 9
TA - C<F—1<F——— TA —>1-" _5>1--> 5
TC A<t——0 C —->1-""~ _s>1-->5
TG /T<K—14/ 6 —>1-" _51--> 4
TT \ A<—O/ T —>1-"" 71— —>0:2
#G g~ 074 BWT.rank()—T<(—1/ #G 0 e
#HH#C o > \C<—1A////##G 0o _-
HHHF g > O H#<< - -1 - o #HHH - 17
~ ’L#Q—— A -

This is much slower than in ordinary FM-indexes,

which use only BWT.rank().

key OuUT BWT I[N key Bg By Vs
//1 ,/””A<___1V\
////1 /TQ——_I* ~ .
$$9 ﬁ// 1w C<k BWT.rank(IN.select(i, 1), A):
AAT$A %1 //:/ﬁ/gi The number of edges from nodes
ATC /o ~ L7 _a<z Wwith label A to nodes with a smaller _x 3
ATG 0"\ ¢ TS key than the node with rank i. -> 3
CA <————1A -G — —1<g _ VA =3 | = U —>)
CT <& -—-—--1 CT 0] —P> 6
GC < _ 0™ GC 0 _3>1--> 38
CT ¢ _ ~ ~148% GT —>1-~"_ _51--> 9
TA < _ —1 TA - >»1-7 _3»1--25
C <¢_ " ~177 C —>1--""~ _s1--> 5
¢ < " -12, a1 ->1-"" _51--> 4
#G o > 0<%, ’,\,\/T<—1/ #G 0 -
##GV\\\\lﬁ%’ \ NCt—— 145 7 ##G 0o _-
R SN B S R S VRE = = = e
\\\14’ ’L#Q__]_A//
~1<t - T R R

We can use a tfaster encoding for reverse deterministic
graphs, where each node has at most one

predecessor with a given label.

Key BWT $§ A C G T #
(Maximally pruned) de Bruijn 383 A 61 0 0 0 O
graphs are reverse AS T 6 0 0 0 1 O
deterministic. ATA C o 0O 1 0 0 ©
| ATC cC 0 0 1 0 0 O
B(l;t[rl]] telli yvr:wether thz node ATG C 0 0 1 0 0 O
with rank i has a predecessor
with label c. on ¢er 0 ¢ U J 9 0
CT # 0 0 0 0 0 1
Now Be.rank(i, 1) = GC G o O O 1 0 O
BWT.rank(IN.select(i, 1), c). GT T O O O O 1 o0
TA AG 0 1 0 1 0 0
With this encoding, GCSAZ2 is c AT 5 1 0 0 1 0
2x to 4x faster.
G AT 0 1 0 0 1 0
It we compress the bitvectors C o 0 1 0 0 ©
for rare characters ($, N, #), e 4 O 0O O O 0 1
the index is also a bit smaller. 44~ 4 0 0 O O 0 1
Hi## $ 1 0 0 0 0 0

Path grapnh construction

Start from paths of length k and use a prefix-doubling
algorithm to build the pruned de Bruijn graph.

extend(): Double the path length by joining paths
A—B and B—C into paths A—C.

prune(): If all paths sharing a common prefix start
from the same node, merge them into a single path.

merge(): Merge all paths with the same label, and all
paths sharing a prefix if their value sets are identical.

Chr 1

Chr 2

Chr 1 {extend())—» Chr 1 { sort())—» Chr 1

Chr 3

Chr 1

Chr 2

Chr 2 —{extend())—» Chr 2 —{ sort())—» Chr 2

Chr 3 —{extend())—> Chr 3 —{ sort())—» Chr 3

e prune() and merge() merge
sorted files using a priority

Nodes queue.

Chr 3

e extend() is done separately for

|_abels
each chromosome.

Path starts * Memory usage is often

determined by extend() for the
most complex chromosome.

GCSA? construction

Index construction is essentially about determining
the edges of the pruned de Bruijn graph.

There is an edge from Xto Y, if one of Xand cY is a
orefix of the other.

One read pointer scans the destination nodes Y,
while o additional pointers scan the source nodes X
starting with each character ce; ..

We can determine the edges by using LF-mapping
In the de Bruijn graph for the input kmers.

Path length

W ES 6.20G 16.7G 116G
Nodes 437G 5.24G 5.73G

13.2 GB 13.5 GB 14.6 GB

index size 18.2 bits / kmer 6.9 bits / kmer 1.08 bits / kmer

Construction:
Time 7.44 h 10.4 h 141 h
Memory 59.8 GB 51.9 GB 52.3 GB

Disk 387 GB 415 GB 478 GB
I/0:

Read 1.37 TB 2.03TB 2.78 TB

Write 0.88 TB 1.51TB 2.25TB

1000GP human variation (forward strand only)
vg mod -p -1 16 -e 4 | vg mod -S -1 100
32 cores, 256 GB memory, distributed Lustre file system

UEIES

Matched

find()

locate()

351584 347453 4.75 us 5.85 US
351584 320764 3.64 Us 4.65 Us
351584 301538 6.00 us 243 us
351555 333258 10.8 ps 5.44 Us
351555 156080 6.57 UsS 3.19 us
351555 153957 10.9 ps 216 us

GCSA2: Order-128 index for the pruned Average time for find queries

variation graph (per query) and locate queries
BWA: The FM-index from BWA v0.7.15 for (per distinct occurrence) with
the reference and its reverse complement kmers extracted from the non-

csa_wt: Fast FM-index from SDSL for the pruned variation graph.
reference

Suffix Tree of a Path Graph

Maximal exact matches

Many read aligners are based on finding maximal
exact matches between the read and the reference
using the bidirectional BWT.

The bidirectional BWT requires that the lexicographic
range and the reverse range have the same length.

The key set must contain the reverse complement of
each key to guarantee this. We do not know how to
do that efticiently.

We can use compressed suffix trees instead.

The compacted trie of
keys looks sufficiently

similar to the suffix tree.

We can consider it the
suffix tree of the path
graph.

It the path graph is a
maximally pruned

de Bruijn graph, the
suffix tree behaves
intuitively.

$$s
A$

ATA <

ATC <

ATG

CA <
CT <
GC <
GT <
™ -
TC -
TG -
#G <

##G <

HHH)

LCPIi...]] is an LCP-interval at

depth d, if:
« LCP[i] <d;
e LCP[j+1] < d;

e LCP[i+1...i] > d: and

« LCPJi+1...]] contains value d.

The LCP interval tree is
equivalent to the suffix tree.
(Abouelhoda et al: Replacing
suffix trees with enhanced suffix
arrays. JDA, 2004.)

We can simulate the suffix tree
with next/previous smaller value
queries and range minimum
queries in the LCP array.
(Fischer et al: Faster entropy-
bounded compressed suffix
trees. TCS, 2009)

#G
##G
HHH

nN - O 4 =4 4 O - O =~ O D N =+ O

—1 | I+d—1

\

LF([sp...ep], P[i-1]) parent([sp...ep])

It lexicographic range [sp...ep] matches substring
P[i...]] of the pattern,

* |exicographic range LF(|sp...ep], P[i-1]) matches
substring P[i—1...]] of the pattern; and

e range parent([sp...ep]) matches P[i—1...i+d-1],
where d < |+1-1 Is the depth of the parent node.

Ohlebusch et al: Computing Matching Statistics and
Maximal Exact Matches on Compressed Full-Text
Indexes. SPIRE 2010.

Pruning the Variation Graph

Complex regions

A whole-genome human variation graph based on
1000GP variation contains trillions (quadrillions?) of
distinct 128-mers.

Almost all of them are from a few complex regions.

We cannot index all potential recombinations in such
regions.

vg and GCSAZ2 have several ways for dealing with
the complex regions.

Pruning

vg mod -p -1 16 -e 4
Remove paths of length 16
crossing more than 4 nontrivial
edges.

vg mod -S -1 100 (b

Remove subgraphs shorter

than 100 bases. 6 °

* Easy and efficient.

 Complex regions may be
removed completely.

Indexing subgraphs

We can index overlapping
subgraphs (e.g. a pruned
variation graph and the
reference path) and merge the
results into a single index.

e (Guarantees that the entire
genome Iis indexed. °

Index construction more
expensive.

* Redundant paths can make e /v

* Requires a reverse
deterministic graph for the ° 0
fast GCSA encoding.

Pruning

Remove paths crossing too
many nontrivial edges, unless
they are on the reference path.

* No need to determinize the
graph.

* Things are getting quite
complex.

Indexing haplotypes

Index only paths
corresponding to known
haplotypes in complex regions.

Multiple nodes of the input
graph map to the same node in
the variation graph.

e (Guarantees that the entire
genome and all observed
variation is indexed.

* Not implemented yet in vg.

Conclusions

The design of a path index is a trade-off between
index size, query performance, maximum query
length, and ignoring complex regions of the graph.

GCSAZ2 prioritizes performance and size, while
supporting queries of length up to 128.

It uses a de Bruijn graph as a kmer index,
compresses it by merging redundant subgraphs, and
encodes the result as a compressed suffix tree.

Sirén: Indexing Variation Graphs. arXiv:1604.06605,
2016. Accepted to ALENEX 2017,
https://github.com/jltsiren/gcsa?2

https://github.com/jltsiren/gcsa2

