GCSAZ2: A scalable
approach to indexing
population variation graphs

Jouni Sirén
Wellcome Trust Sanger Institute

Graphs with paths labeled by sequences are a
natural way of representing genetic variation.

Reference genomes could eventually become such
graphs.

The variation graph toolkit vg (Erik Garrison et al,
https://github.com/vgteam/vQ) is a community effort
to develop tools for working with such graphs.

This talk is about GCSA2, the path index used in vg.

https://github.com/vgteam/vg

Variation grapnhs

v GATTACA

/'

V2 V:3 v:4 V:5 V:0
Tl Tl Aallc 7l A
S S
V-4 o V-3 ‘_ V-2 o V-1 o v:-0
AW U LE) U

™S

Simple directed graphs are easier to handle. The
transformation is also useful for other purposes.

Path Indexes

Path indexes

Path indexes are a central tool for working with
variation graphs. They are text indexes for the path
labels in a graph. The index finds (the start nodes of)
the paths labeled by the query string.

Path indexes

The number of kmers in a graph increases
exponentially with k.

k should be large enough to map perfectly matching
short reads in one piece.

In one human variation graph, the number of kmers
s 1.031k.2.348 billion, or 116 billion for k = 128.

The design of a path index is a trade-off between
index size, query performance, maximum qguery
length, and ignoring complex regions of the graph.

* The kmer index is a simple Key Value Key Value

path index. It consists of a SES 11 GTA 3

set of key-value pairs. ASS 10 TAS 9

* A hash table supports fast ATA ! CA O

kmer queries. ATC 3 TGT 5

ATG 3 C 4

* Binary search in a sorted CAT 26 G A

array Is slower but supports CTT 5 4GO 0
queries shorter than k.

GCA 1 ##G 01

* Index size: terabytes. GCT 1 ## 02

* We can represent the kmer Key Value Key Value

index as a de Bruijn graph. $$S 11 GTA 8
A$S 10 TAS 9
* We label each node with the ATA 7 TCA 5
first character of the key. ATC 3 TGT 5
* The de Bruijn graph ATG 3 C 4
approximates the variation CAT 2,6 G 4
graph. There are no false CTT 2 #GC 0
negatives, and no false GCA 1 ##G 01
positives shorter than k+1. GCT : sag (00

(aTC

=

1 2,6 (E\

TCA ATA
5 7
TGT GTA
5 8

we \ [##c) [#cC 3
0:2 0:1

TAS ASS $$$
0 9 10 11
GCT | [CTT
2 2

s

Paths longer than k+1 may be false positives, but we
can verify them in the input graph.

ATC
LS)
1 2,6 ATG 5 7

, TAS ASS $$$
9 10 11

#H## ##G #GC]
0:2 0:1
TGT GTA
5 8

0
GCT CTT
1 2

— —
rall 2| @

Succinct de Bruijn graphs

Node BWT 1\ ouT
$$3 A 1 1
A;ﬁi (T: 1 1 * Sort the nodes, write the
ATC c 1 1 predecessor labels to BWT, and
ATG C ; 1 encode the indegrees and the
CAT GT 01 001 outdegrees in unary to bitvectors
CTT G 1 01 IN and OUT.
GCA # 1 1
GCT # 1 1 * The result is an FM-index for
Gl U 1 1 de Bruijn graphs.
TAS AG 01 1
1A Al O 1 » Bowe et al: Succinct de Bruijn
el A g 1 graphs. WABI 2012,
TTC C 1 1
TTG C 1 1 _ _
4GC 4 1 - * Index size: hundreds of gigabytes.
##G # 1 1
$ 1

HH##

—

GCSAZ

Path grapns

High-order de Bruijn graphs of a graph have
redundant subgraphs, it shorter keys already specity
the position uniguely.

We can compress the de Bruijn graph by merging
such subgraphs.

Path graphs generalize de Bruijn graphs by using
any prefix-free set of strings as keys.

Inspired by: Sirén et al: Indexing Graphs for Path
Queries with Applications in Genome Research.
TCBB, 2014.

Elj
@

DEEP E
1 2,6 %\ 5 7
#G | [#GC
0:2 0:1 0 TTC

1 2 TTG

We can merge nodes sharing a prefix without affecting
queries, if the value sets are identical.

TA$ ASS $$$
10 11

ATC

. &

ATG 5 /
3

TA$ AS$$ $$3

10 11

‘

TAS ASS $$$
9 10 11

It we keep merging the nodes, we get a (maximally)
pruned de Bruijn graph, which behaves intuitively.

#HH ##G #G
0:2 0:1 0

key key Bgs By Vs
33§ 2 N $%% 0
A$ i/ o~ a8 0
ATAA/ N ATA -l - - -1 > 7
ATC/ JNATC -1 —— - > 1- -3 3
ATG 0 S ATG - >1-—-—-—->1--> 3
CA <t T~ A =P~ 0—3>> 2
CT <& T~ CT 0 D —3> 6
GC < T~ GC 0 _3>>1--> 8
T <z T~ 6T —->1-" 7 _3>1--> 9
TA <¢ < 1<F—— TA - >1-" _1--> 5
C <g¢ C - >1-"" _51--> 5
TG <g \ a_ 6 —>1-"_ _51--> 4
TT < . / T — >1- -~ 11— —2>0:2
#G T > - OA// ”’L\’T<_1/ #G 0 -
##GV\\\\lﬁ" \ NC<F——11 < - #H#G o _-
aiaiah U B S R ST = =k b e

\\\\14’ ”L#Q__ A //

~1<t - T R R

We can encode the result in the same way as in the
succinct de Bruijn graph / GCSA.

key IN key Bg By Vs
- Tl
A U
T — —l ~ .~ 888 0
A$ -~ —l S . A8 0
ATA ——lg S > ATA - > 1- - - - >1--> 7
ATC — =0 ~N_SNATC —>1----3>1--> 3
ATG ——1l<g_ S~ ATG —>1----3>1--> 3
CA ——1l<g_ 7~ CA —P>1~ 0—P> 2
CT — —1<z =~ CT 0 =1 —P 6
GC _ 0-X - L . _5>1-->= 8
or < _ ~-147The actual encoding is different - -~ Z1- = 9
TA T =1 1--> 5
rc ~ ~~-17, forperformance reasons. D ST
TG q:\\1&///\\//T<x—14/ G —->1-""~ _s5>1—--> 4
T < -1 4 ///*\\ A<—O/ T —>1-"" 51-->0:2
#6 < >~ 0L, ’,\,\/T<—1/ 4G 0 e
##GV\\\\14‘” \ NC<H—— 1L 7 _ ##G 0o _-
###V\\\\lﬁ ’,\/#4———1A////###__>1/
\\\\14””’L#<___1A///
~1<t - T R R

We can encode the result in the same way as in the
succinct de Bruijn graph / GCSA.

—1 | I+d—1

\

LF([sp...ep], P[i-1]) parent([sp...ep])

It lexicographic range [sp...ep] matches substring
P[i...]] of the pattern, we can

 extend the match to the left with LF(); and
* remove characters from the right with parent().

This allows us to find maximal exact matches.
Ohlebusch et al: Computing Matching Statistics and

Maximal Exact Matches on Compressed Full-Text
Indexes. SPIRE 2010.

Path length

W ES 6.20G 16.7G 116G
Nodes 437G 5.24G 5.73G

13.2 GB 13.5 GB 14.6 GB

index size 18.2 bits / kmer 6.9 bits / kmer 1.08 bits / kmer

Construction:
Time 7.40 h 10.6 h 14.0 h
Memory 59.8 GB 51.9 GB 52.3 GB

Disk 387 GB 415 GB 478 GB
I/0:

Read 1.37 TB 2.03TB 2.78 TB

Write 0.88 TB 1.51TB 2.25TB

1000GP human variation (forward strand only)
vg mod -p -1 16 -e 4 | vg mod -S -1 100
32 cores, 256 GB memory, distributed Lustre file system

kmers

351584

Matched

347453

find()

locate()

351555 333258 10.9ps 5.66 s
351567 326101 226pus 2.93ps
351596 316500 453ps 3.13ps
351584 320764 4.72us 4.84ps
351555 156080 6.63ps 3.20 us
351567 88786 102pus 2.34 us
351596 35741 13.9pus 3.46 s

GCSAZ2 for the graph vs. the FM-index in BWA for the reference.
Query kmers extracted from the non-pruned variation graph.
Time per find query / distinct occurrence.

kmers Matched find() locate()

351584 347453 4.77 pus 6.75 Us

find() stops early if it cannot match the pattern.
When the number of matched patterns is similar,

GCSAZ2 is as fast as BWA.

e N T N’ ' N 0 N N Nl N T N’ | r/lv N B T rﬂv

351584 320764 4.72us 4.84ps
351555 156080 6.63us 3.20 us
351567 88786 10.2us 2.34 us

351596 35741 13.9 ys 3.460 Us

GCSAZ2 for the graph vs. the FM-index in BWA for the reference.
Query kmers extracted from the non-pruned variation graph.
Time per find query / distinct occurrence.

kmers Matched find() locate()

351584 347453 4.77ps 6.75us

locate() benchmarks may produce biased results
when the queries are not evenly distributed. On the
average, GCSA2 is a bit slower than BWA.

e N T N’ ' A T N N Nl T N’ | rﬂv A rﬂv

351584 320764 4.72us 4.84 us
351555 156080 6.63us 3.20 us
351567 88786 10.2us 2.34 us

351596 35741 13.9us 3.46 ps

GCSAZ2 for the graph vs. the FM-index in BWA for the reference.
Query kmers extracted from the non-pruned variation graph.
Time per find query / distinct occurrence.

kmers Matched find() locate()

351584

347453
351555 333258 10.9 pys 5.00 Us
351567 326101 22.6 us 2.93 us

351596 316500 45.3 us 3.13 Us

he graph takes 5.7 bits/node and supports exact
membership queries in k / 3 microseconds and
neighbor queries in 1 / 3 microseconds. It could be
useful as a de Bruijn graph representation.

351596 35741 13.9us 3.46 ps

GCSAZ2 for the graph vs. the FM-index in BWA for the reference.
Query kmers extracted from the non-pruned variation graph.
Time per find query / distinct occurrence.

Pruning the Variation Graph

Complex regions

A whole-genome human variation graph based on
1000GP variation contains trillions (quadrillions?) of
distinct 128-mers.

Almost all of them are from a few complex regions.
We cannot index all potential recombinations in such
regions. Even it we could, the resulting index would

probably be too biased.

vg and GCSAZ2 have several ways for dealing with
the complex regions.

Pruning

vg mod -p -1 16 -e 4
Remove paths of length 16
crossing more than 4 nontrivial
edges.

vg mod -S -1 100 (b

Remove subgraphs shorter

than 100 bases. 6 °

* Easy and efficient.

* Complex regions may be
removed completely.

Indexing subgraphs

We can index overlapping
subgraphs (e.g. a pruned
variation graph and the
reference path) and merge the
results into a single index.

e (Guarantees that the entire
genome Is indexed. e o

* Redundant paths can make

index construction more ° o

expensive.

Indexing haplotypes

Index only paths
corresponding to known
haplotypes in complex regions.

Multiple nodes of the input
graph map to the same node in
the variation graph.

e (Guarantees that the entire
genome and all observed
variation is indexed.

* Not implemented yet in vg.

Conclusions

The design of a path index is a trade-off between
index size, query performance, maximum query
length, and ignoring complex regions of the graph.

GCSAZ2 prioritizes performance and size, while
supporting queries long enough to map short reads
IN one plece.

It uses a de Bruijn graph as a kmer index,
compresses it by merging redundant subgraphs, and
encodes the result as a compressed suffix tree.

Sirén: Indexing Variation Graphs. arXiv:1604.06605,
2016. https://github.com/jltsiren/gcsa?

https://github.com/jltsiren/gcsa2

