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Relative or reference-based 
data compression is an old 
idea. 

Given a reference dataset R, 
we compress a target 
dataset S as a sequence of 
operations S | R that 
generate S from R. 

The reference dataset can 
be a synthetic reference 
designed to improve 
compression performance.

AGTACAGATCGATCCGATCCAGCGTACG

AGTACAGATCGCCAGCGTAATCCGATCG

R

S

S | R: (0,11,C), (19,7,A), (12,7,G)

Go to offset 19 in the reference, 
take 7 characters, and 
add the mismatch A.

Relative Lempel-Ziv (RLZ)



• We can do more with data structures. 

• Given data structures D(R) for the reference and 
D(S) for the target, we compress D(S) relative to 
D(R) as D(S | R). 

• Given D(S | R) and D(R), we can simulate D(S). 

• This is similar to persistent data structures, but the 
focus is on space-efficiency instead of maintaining 
past states. 

• We can also view relative data structures as version 
control systems with extended functionality.



Why relative data structures?
• Assume a large collection of similar datasets (e.g. 

assembled individual genomes). 

• We can take advantage of the similarities to 
compress data structures for the entire collection. 

• Such data structures are usually immutable for 
performance reasons. 

• We can replace or augment the compressed data 
structures with relative data structures to make 
adding or removing individual datasets faster.



• Somewhat worse 
compression, as we cannot 
take advantage of the 
similarities between Si and Sj 
not existing in the reference. 

• Queries must be repeated 
for each dataset. 

• Queries can be restricted to 
any subcollection.

C = {S1, …, Sm}

R

S1 | R Sm | R



C = {S1, …, Sm}

R

Sm+1

Sm+1 | R

C ⋃ {Sm+1} | C

Si

Si | R

C \ {Si} | CBuild

Decompress



C = {S1, …, Sm}

R

Sm+1

Sm+1 | R

C ⋃ {Sm+1} | C, Sm+1

Si

Si | R

C \ {Si} | C, SiBuild

Decompress 
or simulate



Relative FM-Index



Burrows-Wheeler transform
 TAGCATAGAC$

C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

• Add a unique terminator ($) to the end of 
the text, sort the suffixes in lexicographic 
order, and output the preceding character 
for each suffix. 

• The permutation is easily reversible and 
makes the text easier to compress 
(Burrows & Wheeler, 1994). 

• The combinatorial structure is similar to 
the suffix array, which makes the BWT 
useful as a space-efficient text index 
(Ferragina & Manzini, 2000, 2005).



LF-mapping
C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

          $
        AC$
      AGAC$
 AGCATAGAC$
    ATAGAC$
         C$
   CATAGAC$
       GAC$
  GCATAGAC$
     TAGAC$
TAGCATAGAC$

LF(3, C)

Interpretation: LF(i, c) = C[c] + BWT.rank(i, c) suffixes 
are strictly before the hypothetical suffix.



Backward searching
C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

          $
        AC$
      AGAC$
 AGCATAGAC$
    ATAGAC$
         C$
   CATAGAC$
       GAC$
  GCATAGAC$
     TAGAC$
TAGCATAGAC$

LF([1…4], C)

LF([sp…ep], c) = [LF(sp, c)…LF(ep+1, c) –1]



Locating the occurrences
C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

          $
        AC$
      AGAC$
 AGCATAGAC$
    ATAGAC$
         C$
   CATAGAC$
       GAC$
  GCATAGAC$
     TAGAC$
TAGCATAGAC$

We sample some suffix array pointers and iterate  
LF-mapping to derive the rest from the samples.

LF(2, T) Text position 6

Text position 5



    R: CTAGCATAGAC$
        BWT(R)
          C
CS(R)     G
          T
          T
          C
T         A
A         G
A         $
          A
          A
          A
          C

S: CTAGCATCGAC$
      BWT(S)
        C
        G     CS(S)
        T
        C
        A
        G         T
        T         C
        $         A
        C
        A
        C
        A

C
G
T
C
A
G
$
A
C

The relative FM-index (Belazzougui, Gagie, Gog, Manzini, and Sirén. 
SPIRE 2014) simulates the FM-index of S by aligning the BWTs and 

storing the alignment and the symmetric difference.



    R: CTAGCATAGAC$
        BWT(R)
          C
CS(R)     G
          T
          T
          C
T         A
A         G
A         $
          A
          A
          A
          C

S: CTAGCATCGAC$
      BWT(S)
        C
        G     CS(S)
        T
        C
        A
        G         T
        T         C
        $         A
        C
        A
        C
        A

C
G
T
C
A
G
$
A
C

The relative FM-index (Belazzougui, Gagie, Gog, Manzini, and Sirén. 
SPIRE 2014) simulates the FM-index of S by aligning the BWTs and 

storing the alignment and the symmetric difference.

BWT(S).rank = BWT(R).rank + CS(S).rank – CS(R).rank



    R: CTAGCATAGAC$
         F(R)
          $
          A
          A
          A
          A
          C
          C
          C
          G
          G
          T
          T

S: CTAGCATCGAC$
       F(S)
        $
        A  F(CS(S))
        A
        A
        C
        C         A
        C         C
        C         T
        G
        G
        T
        T

$
A
A
C
C
C
G
G
T

For faster select queries, we store the same alignment after stable 
sorting (Boucher, Bowe, Gagie, Manzini, and Sirén. SPIRE 2015).



    R: CTAGCATAGAC$
         F(R)
          $
          A
          A
          A
          A
          C
          C
          C
          G
          G
          T
          T

S: CTAGCATCGAC$
       F(S)
        $
        A  F(CS(S))
        A
        A
        C
        C         A
        C         C
        C         T
        G
        G
        T
        T

$
A
A
C
C
C
G
G
T

For faster select queries, we store the same alignment after stable 
sorting (Boucher, Bowe, Gagie, Manzini, and Sirén. SPIRE 2015).

The fourth C in BWT(S) is aligned with the third 
C in BWT(R). We use the original alignment to 

map BWT(R).select(3, C) to BWT(S).



    R: CTAGCATAGAC$

          C
          T
          A
          G
          C
          A
          T
          A
          G
          A
          C
          $

S: CTAGCATCGAC$

        C
        T
        A
        G
        C
        A
        T
        C
        G
        A
        C
        $

C
T
A
G
C
G
A
C
$

The alignment is BWT-invariant, if it is also an alignment of the original 
texts. We store the alignment in text order to support locate.



    R: CTAGCATAGAC$

          C
          T
          A
          G
          C
          A
          T
          A
          G
          A
          C
          $

S: CTAGCATCGAC$

        C
        T
        A
        G
        C
        A
        T
        C
        G
        A
        C
        $

C
T
A
G
C
G
A
C
$

To determine SA(S)[i], we: 

1. Find an aligned position LFk(i) in BWT(S). 
2. Map LFk(i) to the corresponding position j in 

BWT(R). 
3. Determine SA(R)[j]. 
4. Map SA(R)[j] to SA(S)[LFk(i)]. 
5. Return SA(S)[LFk(i)]+k.

An alignment of BWTs is BWT-invariant, if it is also an alignment of the 
original texts. We store the alignment in text order to support locate.



BWT(R)   C G TT C A G  $ A A AC
BWT(RS)  CCGGTTTCCAAGGT$$ACAAACCA
BWT(S)    C G  T C A GT $ C A  CA

• The BWT merging algorithm tells how to interleave 
BWT(R) and BWT(S) into BWT(RS). 

• The interleaving contains essentially the same 
information as a BWT-invariant alignment of BWT(R) 
and BWT(S). 

• We can use the interleaving as BWT(RS | R, S).



Size find() find() + locate()

FMI
bit_vector 5.83 bpc 32.9 s 662 s

FMI
rrr_vector 4.14 bpc 142 s 4490 s

RFM
(full reference) 1.26 bpc 254 s 2092 s

RFM
(female 

reference)
1.11 bpc 292 s 2074 s

WT-based FM-index (samples: SA 17, ISA 64) vs. relative FM-index. 
Maternal haplotypes of NA12878 vs. human reference genome. 

2 million patterns of length 32 with 255 million occurrences.



Relative Suffix Tree



Suffixes LCP
$ 0
AC$ 0
AGAC$ 1
AGCATAGAC$ 2
ATAGAC$ 1
C$ 0
CATAGAC$ 1
CTAGCATAGAC$ 1
GAC$ 0
GCATAGAC$ 1
TAGAC$ 0
TAGCATAGAC$ 3

AG

C

G

T
A
G

We can simulate the suffix tree 
with an FM-index and NPR 
queries (next/previous smaller 
value, range minimum) in the 
LCP array. (Fischer et al. TCS, 
2009) 

LCP[sp…ep] is an internal node 
of the suffix tree at depth d, if 
• LCP[sp] < d; 
• LCP[ep+1] < d; 
• d ∈ LCP[sp+1…ep]; and 
• LCP[sp+1…ep] ≥ d. 
(Abouelhoda et al. JDA, 2004)



Suffixes LCP
$ 0
AC$ 0
AGAC$ 1
AGCATAGAC$ 2
ATAGAC$ 1
C$ 0
CATAGAC$ 1
CTAGCATAGAC$ 1
GAC$ 0
GCATAGAC$ 1
TAGAC$ 0
TAGCATAGAC$ 3

0

If we have fast sequential access 
to the LCP array, we can support 
NPR queries with a range 
minima tree. 

We partition the LCP array into 
blocks, which become the 
leaves of the tree. Each node 
contains the minimal LCP value 
in the corresponding range. 

In practice, we store the minimal 
values in level order. This allows 
us to visit all children of a node 
with a single memory access.

1

0

1

0

0

0

0

0 0

0

0



• The relative suffix tree (Gagie, Navarro, Puglisi, and 
Sirén. arXiv, 2015) uses RLZ to compress the LCP 
array. Each phrase becomes a leaf in the range minima 
tree. 

• The parsing uses differential values LCP[i] – LCP[i–1], 
but the mismatches are stored as absolute LCP values. 

• LCP(S)[i+k] = LCP(S)[i–1] + LCP(R)[j+k] – LCP(R)[j–1], 
where the phrase starts at LCP(S)[i] and LCP(R)[j]. 

• The result is surprisingly fast, but the RLZ parsing 
requires too much space. 

• We decided not to publish the paper until we can 
figure out something better than RLZ.



Size Traversal Matching 
statistics

cst_sct3
lcp_dac 18.1 bpc 18 min 114 min

cst_sct3
PLCP 10.8 bpc 18 min 166 min

cst_sada 12.3 bpc 5 min 308 min

cst_fully 4.98 bpc >2160 min –

Relative ST
slow select()

3.18 bpc 
(RFM 1.11 bpc) 41 min 855 min

Relative ST
fast select() 3.63 bpc 41 min 340 min

Compressed suffix trees from SDSL vs. relative suffix tree. 
Maternal haplotypes of NA12878 vs. human (female) reference. 
ST traversal and matching statistics vs. another chr1 assembly.



S | R: (0,7,C), (8,3,$)

CTAGCATAGAC$

CTAGCATCGAC$

R

S

R: CTAGCATAGAC$

$            C 0
AC$          G 0
AGAC$        T 1
AGCATAGAC$   T 2
ATAGAC$      C 1
C$           A 0
CATAGAC$     G 1

CTAGCATAGAC$ $ 1
GAC$         A 0
GCATAGAC$    A 1
TAGAC$       A 0
TAGCATAGAC$  C 3

S: CTAGCATCGAC$

$            C 0
AC$          G 0

AGCATCGAC$   T 1
ATCGAC$      C 1
C$           A 0
CATCGAC$     G 1
CGAC$        T 1
CTAGCATCGAC$ $ 1
GAC$         C 0
GCATCGAC$    A 1

TAGCATCGAC$  C 0
TCGAC$       A 1

RLZ works well with 
substitutions. We can 
assume that the next 
phrase starts length+1 
characters after the 
previous one. 

Lexicographic sorting 
transforms substitutions 
into indels. 

The substitutions also 
change LCP values.



RLZAP uses two kinds of phrases: 
• Explicit phrases contain an absolute pointer to the reference. 
• Adaptive phrases encode the pointer relative to what can be 

expected based on the previous phrase. 

Each phrase can contain multiple mismatch characters at the end. We 
essentially represent the target sequence as a concatenation of local 
alignments with the reference. 

Cox, Farruggia, Gagie, Puglisi, and Sirén. SPIRE 2016.

S | R: (4,7,CT), (–1,3,A), (+1,5,C), (0,4,$) 

AGATCTAGCATAGACGACCATA$

CTAGCATCTGACACCATACAGAT$

R

S



Conclusions



• Relative data structures simulate data structures for 
a target dataset, given the same data structure for a 
similar reference dataset. 

• The relative FM-index has similar performance to 
compressed FM-indexes, while using much less 
space. 

• The relative suffix tree also achieves good time/
space trade-offs, but there is still much room for 
improvement.


