Burrows-\Wheeler
Transtform for Terabases

Jouni Sirén
Wellcome Trust Sanger Institute



Burrows-\Wheeler transtorm

| | TAGCATAGACS
Add a unigue terminator ($) to the end of
the text, sort the suffixes in lexicographic
order, and output the preceding character C $
for each suffix. G ACS
Use distinct terminators for multiple texts. T AGACS
T AGCATAGACS
The permutation is easily reversible and C ATAGACS
makes the text easier to compress A CS
Burrows & Wheeler, 1994).
( ) G CATAGACS
The combinatorial structure is similar to A GACS
the suffix array, which makes the BWT A GCATAGACS
useful as a space-efficient text index
(Ferragina & Manzini, 2000, 2005). A TAGACS
S TAGCATAGACS



| arge-scale BW1 construction

Strategy: A single BWT is faster to query, while it is
easier to build multiple smaller BWTSs.

Speed: Should the construction finish overnight? Over
the weekend? In two weeks”?

Memory: We may have less than n bits of memory for
sorting n suffixes.

Hardware: We may not have large amounts of fast disk
space, GPUs, or other non-standard hardware.

Efficiency: How many nodes we can afford to use?



Example: Read Server

1000 Genomes Project Phase 3 A single node

Low-coverage and exome data: 2535 * 32 CPU cores
samples, 922 billion reads, 86 Tbp.

* 256 gigabytes of memory
Error correction: A trade-off between

losing data and not correcting * 369 gigabytes of local
seguencing errors. disk space at /tmp
Corrected data: 819 billion reads * Plenty of shared disk
trimmed to 73 bp or 100 bp, 53.0 space with no

billion unique sequences, 4.88 Tbp. performance guarantees

Indexes: 16 run-length encoded BWTs
taking 561.5 GB, original read
iInformation in metadata databases. https://github.com/wtsi-svi/ReadServer



https://github.com/wtsi-svi/ReadServer

L F-mapping

S C $
ACS G ACS
AGACS \ T AGACS
AGCATAGACS ’ T AGCATAGACS
ATAGACS ") C ATAGACS
c$ ‘)“‘( A CS$
CATAGACS '0\‘\ G CATAGACS
GACS /)\ A GACS
GCATAGACS A GCATAGACS
TAGACS A TAGACS
TAGCATAGACS $ TAGCATAGACS

LF(i) = C[BWTI[i]] + BWT.rank(i, BWTJi])



Hypothetical suffixes

S C §$
ACS G ACS
AGACS T AGACS
AGCATAGACS LF(4, ¢) T AGCATAGACS
ATAGACS C ATAGACS
CS / A CS
CATAGACS G CATAGACS
GACS A GACS
GCATAGACS A GCATAGACS
TAGACS A TAGACS
TAGCATAGACS S TAGCATAGACS

LF(i, ¢) = C[c] + BWT.rank(i, c)



TAGCATAGACS  CTAGCATAGACS Insert ¢ to the

beginning:
S C S C
ACS G ACS G
AGACS T AGACS T
AGCATAGACS T AGCATAGACS T
ATAGACS C ATAGACS C
CS A CS A
CATAGACS G CATAGACS G > Insert § after
CTAGCATAGACS 5 position LF(i, ¢).
GACS A GACS A
GCATAGACS A GCATAGACS A
TAGCATAGACS S TAGCATAGACS C atpositioniwith

the Inserted C.



Construction options

From a suffix array In-memory construction uses too much memory.
Disk-based algorithms are too slow at 1-2 MB/s.

Direct BWT construction General-purpose algorithms too slow at 1-2 MB/s;
memory issues with large datasets.

DNA-specific algorithms Reach 5-10 Mbp/s; memory issues beyond 1 Thp.

GPU-based algorithms  Exotic hardware required; major memory iSSues.

Distributed algorithms  Efficiency issues; require large amounts of
hardware.



Direct BWI1 construction

Batch updates: Transform the BWT of S into the BWT
of XS. Overhead: O(|X| log |XS]) bits. (Hon et al., 2007)

Dynamic BWT: Store the BWT in a search tree to
support edit operations. Size increases by a constant
factor, e.g. by 1.5x. (Chan et al., 2007)

Merging algorithm: Merge the BWTs of A and B into
the BWT of AuB. Overhead: min(|AuB|, [B| log |A|) bits.

(Sirén, 2009)

Short reads: Extend all texts at once. Fast version
keeps the texts in memory. (Bauer et al., 2013)



BWT rs

Source

BWIT merging

S: CTAGCATAGACS

SA BWT Suffixes

12 ¢ $

10 G AC$

8 T  AGAC$

3 T  AGCATAGACS
6 C  ATAGAC$

11 A C$

5 G  CATAGAC$

1 $  CTAGCATAGACS$
9 A GACS

4 A GCATAGACS$

7 A TAGAC$

2 C  TAGCATAGAC$
Cc C G G T T

R S R S S S

0 1 0 1 1 1

11----""77

QrFE r Qa0 = QA

= n Q
— U =
— W @
S @
S o4
— U

R: CTAGCATCGACS

Suffixes

$

ACS$
AGCATCGACS$
ATCGAC$

C$

CATCGACS
CGACS$
CTAGCATCGACS
GAC$
GCATCGACS
TCGACS$
TAGCATCGACS

S Iy
S o
— U =
— U =
o o

We start with RA[1] = 1 and then iterate

RA[LFs(1)] = LFr(RA[I], BWTs|i]).

—
o
—~

R R R R = OO 0O00O 0O oo e«
NG GG NO R (SR NI NI NSRS i e i, —
O ~J ~J IO O OO O O ot Ot

— U =
o o
= N Q
S o

O O© © © 0o M@

10
10
10
10
10
10
10

10
10
11
11
11
11
12
12
12
12
12
12



BWIT merging

Search: Generate the ranks in any order. There are
many possible low-level optimizations. Multiple threads
can be used to handle different sequences.

Sort: Sort the ranks to build the rank array or the
Interleaving bitvector. This can be done in parallel with
the other phases.

Merge: Interleave the source BWTs according to the
rank array or the interleaving bitvector. This can be
done almost in-place with block-based arrays.



Search thread

while ...

(rank, count) « nextRun()

run_buffer.insert(rank, count)

if run_bufter.tull():
sort(run_bufter)
compress(run_buffer)
thread_buffer « merge(run_buffer, thread_buffer)
if thread_buffer.tull():

merge(thread_buffer, merge_buffers)

compress() uses differential encoding for the ranks and
byte-level prefix-free codes for encoding the stream of
rank differences and run lengths.



Merge buffers

thread buffer

thread buffer

thread buffer

thread buffer

thread buffer

thread buffer

thread buffer

merge()
\‘ merge()
merge() /
file
merge()
> merge()

thread buffer

merge()

VARVARVARY,

We need one merge buffer / level.



I\Aerge phase

. Thread 1: § Thread .2. E
fil mergmg : § interleavmgi
file BWTa
file
file ] v
PHIOHLY 1 = interleave() » BWTaus
. queue : _
file
file
. BWTg
file
file

Multithreaded merging vvould help with a faster disk.



Dataset

Read Server:
AA, TT, AT, TA

CEU trio:

NA12878, NA12891,

NA12892

Read Server:
*A *C

Read Server:
*G, T

16.2 billion

/.63 billion

26.5 billion

26.5 billion

1.49 Thp

771 Gbp

2.45 Thp

2.44 Thp



Time (h)

30 31 32 33 34 35 36

Read Server: AA, TT, AT, TA

1 ' r128b256m5 e
| o

- r256b256m5
: r128b512m4 e

1 r256b512m4 e bU
| ()

i . r256b256M6 bu

r128b512m5 e

-1 r256b512m5

120 130 140 150 160 170

Memory usage (GB)

rXbYmZ: X MB run

ers, Y MB thread

fers, Z merge buffers.

1280256m6 » o r128b256m6 had the best
' performance: 9.40 Mbp/s
— 1 T T T T throughput, 30.8 GB
memory overhead.



Time (h)

12 24 36 48 60 72

0

CEU trio

RopeBWT: The algorithm

BWT-merge

RopeBWT2 (RLO)

BWT-merge (RLO)

RopeBWT2 e

RopeBWT e
o
RopeBWT (RLO)

| | | |
64 128 192 256

Memory usage (GB)

of Bauer et al. for short

reads.

RopeBWT2: Dynamic
FM-index. Memory usage:

~1.5BWT

+ 15 GB.

BWT-merge: Merge the
BWTs build by RopeBWT.
Uses ~|BWT| + 30 GB of

memory.



Read Server: *A, *C / *G, *T

Read Server
format

BWT-merge
format

Individual BWTs

Merged BWTs

281 GB 239 GB
281 GB s13nours 239 GB
221 GB memory
297 GB disk
383.0 hours
219 GB memory

300 GB disk
225 GB 181 GB
226 GB 180 GB



Conclusions

We can merge BWTs at 600 — 800 Gbp/day with 30
gigabytes of memory overhead.

This makes it possible to build multi-terabase BWTs
on the systems they will be used.

Merging the Read Server BWTs into two files and
converting them to the new format reduced their size
from 560 GB to 360 GB.

hitps://github.com/jltsiren/bwt-merge



https://github.com/jltsiren/bwt-merge

