
Burrows-Wheeler
Transform for Terabases

Jouni Sirén
Wellcome Trust Sanger Institute

Burrows-Wheeler transform
 TAGCATAGAC$

C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

• Add a unique terminator ($) to the end of
the text, sort the suffixes in lexicographic
order, and output the preceding character
for each suffix.

• Use distinct terminators for multiple texts.

• The permutation is easily reversible and
makes the text easier to compress
(Burrows & Wheeler, 1994).

• The combinatorial structure is similar to
the suffix array, which makes the BWT
useful as a space-efficient text index
(Ferragina & Manzini, 2000, 2005).

Large-scale BWT construction
Strategy: A single BWT is faster to query, while it is
easier to build multiple smaller BWTs.

Speed: Should the construction finish overnight? Over
the weekend? In two weeks?

Memory: We may have less than n bits of memory for
sorting n suffixes.

Hardware: We may not have large amounts of fast disk
space, GPUs, or other non-standard hardware.

Efficiency: How many nodes we can afford to use?

Example: Read Server
1000 Genomes Project Phase 3

Low-coverage and exome data: 2535
samples, 922 billion reads, 86 Tbp.

Error correction: A trade-off between
losing data and not correcting
sequencing errors.

Corrected data: 819 billion reads
trimmed to 73 bp or 100 bp, 53.0
billion unique sequences, 4.88 Tbp.

Indexes: 16 run-length encoded BWTs
taking 561.5 GB, original read
information in metadata databases.

A single node

• 32 CPU cores

• 256 gigabytes of memory

• 369 gigabytes of local
disk space at /tmp

• Plenty of shared disk
space with no
performance guarantees

https://github.com/wtsi-svi/ReadServer

https://github.com/wtsi-svi/ReadServer

LF-mapping
C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

 $
 AC$
 AGAC$
 AGCATAGAC$
 ATAGAC$
 C$
 CATAGAC$
 GAC$
 GCATAGAC$
 TAGAC$
TAGCATAGAC$

LF(i) = C[BWT[i]] + BWT.rank(i, BWT[i])

Hypothetical suffixes
C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

 $
 AC$
 AGAC$
 AGCATAGAC$
 ATAGAC$
 C$
 CATAGAC$
 GAC$
 GCATAGAC$
 TAGAC$
TAGCATAGAC$

LF(i, c) = C[c] + BWT.rank(i, c)

LF(4, C)

 TAGCATAGAC$

$ C
AC$ G
AGAC$ T
AGCATAGAC$ T
ATAGAC$ C
C$ A
CATAGAC$ G

GAC$ A
GCATAGAC$ A
TAGAC$ A
TAGCATAGAC$ $

CTAGCATAGAC$

$ C
AC$ G
AGAC$ T
AGCATAGAC$ T
ATAGAC$ C
C$ A
CATAGAC$ G
CTAGCATAGAC$ $
GAC$ A
GCATAGAC$ A
TAGAC$ A
TAGCATAGAC$ C

Insert C to the
beginning:

1. Replace the $
at position i with
the inserted C.

2. Insert $ after
position LF(i, c).

Construction options
From a suffix array In-memory construction uses too much memory.

Disk-based algorithms are too slow at 1–2 MB/s.

Direct BWT construction General-purpose algorithms too slow at 1–2 MB/s;
memory issues with large datasets.

DNA-specific algorithms Reach 5–10 Mbp/s; memory issues beyond 1 Tbp.

GPU-based algorithms Exotic hardware required; major memory issues.

Distributed algorithms Efficiency issues; require large amounts of
hardware.

Direct BWT construction
Batch updates: Transform the BWT of S into the BWT
of XS. Overhead: O(|X| log |XS|) bits. (Hon et al., 2007)

Dynamic BWT: Store the BWT in a search tree to
support edit operations. Size increases by a constant
factor, e.g. by 1.5x. (Chan et al., 2007)

Merging algorithm: Merge the BWTs of A and B into
the BWT of A⋃B. Overhead: min(|A⋃B|, |B| log |A|) bits.
(Sirén, 2009)

Short reads: Extend all texts at once. Fast version
keeps the texts in memory. (Bauer et al., 2013)

BWT merging
S: CTAGCATAGAC$

$
AC$
AGAC$
AGCATAGAC$

C$
CATAGAC$
CTAGCATAGAC$
GAC$
GCATAGAC$
TAGAC$
TAGCATAGAC$

Su�xesBWT
C
G
T
T
C
A
G
$
A
A
A

ATAGAC$

C

SA
12
10
8
3
6
11
5
1
9
4
7
2

RA

R: CTAGCATCGAC$

$
AC$
AGCATCGAC$

CGAC$

C$
CATCGAC$

CTAGCATCGAC$
GAC$
GCATCGAC$
TCGAC$
TAGCATCGAC$

Su�xesBWT
C
G
T
C
A
G
T
$
C
A
A

ATCGAC$

C

SA
12
10
3
6
11
5
8
1
9
4
7
2

1
2
2
2
3
5
5
7
9
9
10
1112

11
10
9
8
7
6
5
4
3
2
1
i LF

6
9
11
12
7
2
10
1
3
4
5
8

BWTRS

Source

BRS

C G T T C A G $ A A A C

R R R R R R R R RR R RS S S S S S S S S S S S

C G T C A G T $ C A A C

0 0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1 1 1 1 1 1

$ A C G T
LF(i, c)

0
0
0
0
0
0
0
1
1
1
1
1

1
1
1
1
2
2
2
2
2
3
4
4

5
5
5
6
6
6
6
6
7
7
7
8

8
9
9
9
9
10
10
10
10
10
10
10

10
10
11
11
11
11
12
12
12
12
12
12

We start with RA[1] = 1 and then iterate
RA[LFS(i)] = LFR(RA[i], BWTS[i]).

BWT merging

Search: Generate the ranks in any order. There are
many possible low-level optimizations. Multiple threads
can be used to handle different sequences.

Sort: Sort the ranks to build the rank array or the
interleaving bitvector. This can be done in parallel with
the other phases.

Merge: Interleave the source BWTs according to the
rank array or the interleaving bitvector. This can be
done almost in-place with block-based arrays.

Search thread
while …

(rank, count) ← nextRun()
run_buffer.insert(rank, count)
if run_buffer.full():

sort(run_buffer)
compress(run_buffer)
thread_buffer ← merge(run_buffer, thread_buffer)
if thread_buffer.full():

merge(thread_buffer, merge_buffers)

compress() uses differential encoding for the ranks and
byte-level prefix-free codes for encoding the stream of
rank differences and run lengths.

Merge buffers

We need one merge buffer / level.

thread_buffer
merge()

thread_buffer

thread_buffer

thread_buffer

thread_buffer

thread_buffer

thread_buffer

thread_buffer

merge()

merge()

merge()

merge()

merge()

file

Merge phase

Multithreaded merging would help with a faster disk.

file

file

file

file

file

file

file

file

priority
queue interleave() BWTA⋃B

BWTA

BWTB

Thread 1:
merging

Thread 2:
interleaving

Dataset Reads Size

Read Server:
AA, TT, AT, TA 16.2 billion 1.49 Tbp

CEU trio:
NA12878, NA12891,

NA12892
7.63 billion 771 Gbp

Read Server:
*A, *C 26.5 billion 2.45 Tbp

Read Server:
*G, *T 26.5 billion 2.44 Tbp

Read Server: AA, TT, AT, TA

Memory usage (GB)

Ti
m

e
(h

)

120 130 140 150 160 170

30
31

32
33

34
35

36

●

●

●

●

●●

●

●

r128b512m5

r256b256m5

r256b256m6

r128b256m5

r256b512m5
r128b256m6

r128b512m4
r256b512m4

rXbYmZ: X MB run
buffers, Y MB thread
buffers, Z merge buffers.

r128b256m6 had the best
performance: 9.40 Mbp/s
throughput, 30.8 GB
memory overhead.

CEU trio
RopeBWT: The algorithm
of Bauer et al. for short
reads.

RopeBWT2: Dynamic
FM-index. Memory usage:
~1.5·|BWT| + 15 GB.

BWT-merge: Merge the
BWTs build by RopeBWT.
Uses ~|BWT| + 30 GB of
memory.

Memory usage (GB)

Ti
m

e
(h

)

0 64 128 192 256

0
12

24
36

48
60

72

●

●

●

●

●

●

RopeBWT

RopeBWT2

BWT−merge

RopeBWT (RLO)

RopeBWT2 (RLO)

BWT−merge (RLO)

Read Server: *A, *C / *G, *T

281 GB
281 GB

239 GB
239 GB

225 GB
226 GB

181 GB
180 GB

81.3 hours
221 GB memory

297 GB disk

83.0 hours
219 GB memory

300 GB disk

Read Server
format

BWT-merge
format

Individual BWTs Merged BWTs

Conclusions

• We can merge BWTs at 600 – 800 Gbp/day with 30
gigabytes of memory overhead.

• This makes it possible to build multi-terabase BWTs
on the systems they will be used.

• Merging the Read Server BWTs into two files and
converting them to the new format reduced their size
from 560 GB to 360 GB.

• https://github.com/jltsiren/bwt-merge

https://github.com/jltsiren/bwt-merge

