
Distribution-Aware
Compressed

Full-Text Indexes
Jouni Sirén

University of Helsinki, Finland
with

Paolo Ferragina and Rossano Venturini
University of Pisa, Italy

• PhD (computer science), University of
Helsinki, 2012

• Supervisor: Veli Mäkinen

• Thesis: Compressed Full-Text Indexes for
Highly Repetitive Collections

• http://iki.fi/jouni.siren/

Jouni Sirén

http://iki.fi/jouni.siren/
http://iki.fi/jouni.siren/

Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, Niko
Välimäki: Storage and Retrieval of Highly
Repetitive Sequence Collections. Journal of
Computational Biology, 2010. Earlier in SPIRE 2008,
RECOMB 2009.

Collections of individual genomes or different
versions of documents compress extremely well.
With them, o(n) bits of overhead information in a
CSA can be too much.

CSAs where overhead scales with compressed size.

Jouni Sirén: Compressed Suffix Arrays for
Massive Data. SPIRE 2009.

Compressed data structures allow handling larger
data sets in main memory than with uncompressed
ones. Yet how do we build the compressed
structures in the first place?

A space-efficient parallel construction algorithm for
CSAs. Practical for data sets of tens of gigabytes in
size.

Jouni Sirén, Niko Välimäki, Veli Mäkinen: Indexing
Finite Language Representation of
Population Genotypes. WABI 2011.

Compressed suffix arrays can index sets of
sequences. What if we want to index plausible
recombinations of those sequences, or a reference
sequence and a set of known genetic variation?

CSAs for indexing generalizations of (subgraphs of)
De Bruijn graphs.

Contents

1. Compressed full-text indexes

2. Optimizing for known query distributions
(ESA 2011)

3. Optimizing for unknown query
distributions (work in progress)

A

Suffix Tree SA Sorted Suffixes BWT

10

2

6

3

7

9

1

4

5

8

$

$GTCATGCAG $

10

2

6

3

7

9

1

4

5

8

$GTCATGCA

$GTCATGC

$GTCATG

$GTCAT

$GTCA

$GTC

$GT

$G

GTCATGCA

A

C

C

G

G

G

T

T

G

G

G

G

G

G

G

G

G

A

A

A

A

A

A

A

C

C

C

C

C

C

G

G

G

G

G

T

T

T

T

A

A

A

C

C

T

AC

C

$

G

T

GTACTG$

TG$

GTACTG$

TG$

$

ACGTACTG$

TACTG$

ACTG$

G$

$GTCATGCAGGC

Full-text indexes

Suffix array

• Pointers to the suffixes of the text in
lexicographic order.

• Index size (usually 5 or 9 Bpc) limits the
size of the data that can be indexed.

• find(P) returns the lexicographic range of
suffixes prefixed by pattern P.

• locate(i) returns the suffix of rank i.

Burrows-Wheeler
transform

• Permutation of the text related to SA.

• Instead of a pointer to the suffix, we store
the previous character.

• Easier to compress than the original text.

• An index based on the BWT does not
require the original text.

A

Suffix Tree SA Sorted Suffixes BWT

10

2

6

3

7

9

1

4

5

8

$

$GTCATGCAG $

10

2

6

3

7

9

1

4

5

8

$GTCATGCA

$GTCATGC

$GTCATG

$GTCAT

$GTCA

$GTC

$GT

$G

GTCATGCA

A

C

C

G

G

G

T

T

G

G

G

G

G

G

G

G

G

A

A

A

A

A

A

A

C

C

C

C

C

C

G

G

G

G

G

T

T

T

T

A

A

A

C

C

T

AC

C

$

G

T

GTACTG$

TG$

GTACTG$

TG$

$

ACGTACTG$

TACTG$

ACTG$

G$

$GTCATGCAGGC

Full-text indexes

locate(i) with BWT

• SA[LF(i)] = SA[i] – 1

• LF(i) = C[BWT[i]] + rankBWT[i](BWT, i)

• We sample some text positions (i, SA[i]).

• If SA[i] has not been sampled, we compute
it as SA[i] = SA[LFj(i)] + j, where SA[LFj(i)]
has been sampled.

Contents

1. Compressed full-text indexes

2. Optimizing for known query
distributions (ESA 2011)

3. Optimizing for unknown query
distributions (work in progress)

Paolo Ferragina, Jouni Sirén, Rossano Venturini:
Distribution-aware compressed full-text
indexes. ESA 2011.

Locating the occurrences of a pattern with a
compressed suffix array is relatively slow. If the
query distribution is skewed, we should be able to
use that information to solve locate queries faster.

Efficient algorithm for optimizing a CSA for a
known query distribution.

Modeling the problem

• Cost of locate() is proportional to the
distance d(i, S) to the nearest sampled text
position s∈S.

• We can only move backward.

• Position i is located with probability P(i).

• Find S of size k that minimizes ∑i P(i) d(i, S).

• Define a DAG with nodes 1 to n+1 and all
possible forward edges.

• Edge (s, s’) encodes the cost of locating
text positions s to s’–1 by using sample s.

• Its weight is w(s, s’) = ∑s≤i<s’ P(i) (i – s).

• Optimal solution is the set of nodes in a
minimum-weight k-link path from 1 to n+1.

Finding the solution

• We want a solution using O(n polylog(n))
time and O(n log n) bits of space.

• Yet there are θ(n2) edges in the DAG!

• We need a better algorithm and a way to
compute edge weights quickly.

Our DAG satisfies the concave Monge property:

w(i+1, j+1) – w(i+1, j) = P(j) (j – i – 1) ≤ P(j) (j – i) = w(i, j+1) – w(i, j)
⟹

w(i, j) + w(i+1, j+1) ≤ w(i, j+1) + w(i+1, j).

If the weights are non-negative integers, we can
solve the problem in O(n log U) time, where U is
the largest edge weight.

The condition holds, if we replace probabilities P(i)
with frequencies f(i) in a query log.

A. Aggarwal, B. Schieber, T. Tokuyama: Finding a
Minimum-Weight k-Link Path in Graphs
with the Concave Monge Property and
Applications. Discrete & Computational
Geometry, 1994.

If there are minimum-weight paths of length a and
b, we can combine them to get a minimum-weight
path of any length between a and b.

Use binary search to find a weight adjustment q,
such that when q is added to all edge weights, there
is a minimum-weight path of length k.

Finding the path

• Finding a minimum-weight path usually
involves dynamic programming.

• Concave Monge property allows us to
restrict our attention to short edges.

• Several theoretical O(n) time algorithms
and a practical O(n log n) time algorithm
are based on that restriction.

Edge weights?

w(i, j)

w(j, n+1)

(j – i) f(j..n)w(i, n+1) =

f(j..n)

j – i

We need w(i, n+1), w(j, n+1) and
f(j..n) to compute w(i, j). While
w(i, n+1) can be huge, we can do
the computations mod 264.

Experimental results

• Text: 1.24 gigabytes of HTML pages.

• Patterns: Search terms from a query log,
weighted by term frequencies.

• Queries: 10000 randomly chosen patterns
with 122 million occurrences.

• System: 2x 2.53 GHz Xeon E5540 (used
only one core), 32 GB memory.

●

●

●

●

●

Sample rate

M
illi

on
s

of
 o

cc
ur

re
nc

es
 /

se
co

nd

8 16 32 64 128

0.
01

0.
1

1
10

10
0

● Uniform
Optimal
Greedy
HalfGreedy

Uniform is the
standard sampling
strategy.

Greedy samples
most frequent
text positions.

HalfGreedy is 50%
Uniform, 50%
Greedy.

Contents

1. Compressed full-text indexes

2. Optimizing for known query distributions
(ESA 2011)

3. Optimizing for unknown query
distributions (work in progress)

Objectives

• Learn the distribution online space-
efficiently.

• Uniform samples take 6–10 bytes each.
Doubling their number doubles the speed.

• Ideal solution would take O(1) time, but
O(log n) time with O(1) random memory
accesses is acceptable.

Find set S of k points that minimizes the sum
∑i f(i) min { i – s | s∈S, s≤i }.

OR

Find a minimum-weight k-link path from 1 to n+1,
where w(s, s’) = w(s, s’) = ∑s≤i<s’ f(i) (i – s).

We have used sample s to retrieve text position i.
This can imply that

a) s is a good sample; or
b) i should be sampled, making s less useful as a

sample.

What do we choose?

s i s’

Basic solution

• Store the sampled positions in a hash table.

• Sample all located positions.

• If there is a collision, drop the old sample.

• Approximates something between Greedy
and HalfGreedy.

Same data and
patterns as in the
static case.

100000 queries
with 1.3 billion
occurrences.

●
●

●

●

●

Sample rate

Av
er

ag
e

di
st

an
ce

 to
 s

am
pl

e

8 16 32 64 128

0
20

40
60

80
10

0

● Uniform
Optimal
Adaptive

Additional heuristics

• Use some static samples, as in HalfGreedy.

• Guarantees reasonable worst-case
performance.

• Two other heuristics can be used to
improve the performance further.

Two hash tables

• New samples are added to hash table B.

• If a sample from hash table B is used, it is
promoted to hash table A.

• If a collision happens in hash table A, the
old sample is demoted to hash table B.

• Good samples are more likely to remain in
the hash tables.

Random sampling

• Cost function: ∑i f(i) min { i – s | s∈S, s≤i }

• If text position i is retrieved by using
sample s, we sample it with a probability
proportional to i – s.

• Text positions that contribute more to the
cost function are more likely to be
sampled.

Same data and
patterns as in the
static case.

100000 queries
with 1.3 billion
occurrences.

●
●

●

●

●

Sample rate

Av
er

ag
e

di
st

an
ce

 to
 s

am
pl

e

8 16 32 64 128

0
20

40
60

80
10

0

● Uniform
Optimal
Adaptive
Heuristics

Caching

• In case of a collision, we drop the old
sample from the hash table.

• This is similar to random caching policy.

• Would some other policy such as LFU or
LRU perform better?

• Can they be implemented in the desired
time and space constraints?

Streaming algorithms

• We are looking for an efficient streaming
algorithm for approximating the cost
function.

• Streaming algorithms already exist for
similar problems, such as finding heavy
hitters.

• Can they be adapted to our problem?

Thank you!

